Tutti gli articoli di Luigi Borghi

Finalmente Insight è riuscito ad introdurre la sua sonda nel suolo marziano.

Chi di voi ha seguito l’avventura di questo lander della NASA sa bene quanto il mondo scientifica aspettasse questa notizia! Buona parte degli obiettivi di questo lander erano e sono legati a questo probe che non ne voleva sapere di perforare il suolo.
È incredibile la flessibilità operativa di questi robot. Con il simulatore a terra si riescono ad effettuare innumerevoli tentativi prima di trovare la strategia giusta, ma non bisogno scordarsi che sono due oggetti diversi in due ambienti completamente diversi! Alla NASA ci sono dei tecnici che guardano, ragionano ed eseguono, su Marte non c’è nessuno!
L’articolo che vi propongo, preso da Alive Universe, l’ho trovato interessante perché fa capire come a volte anche con tecnologie all’avanguardia come l’hardware di Insight, le dinamiche e gli strumenti per piantare un palo o una sonda in terra o nel suolo marziano sono le stesse: il martello!
Eccovi l’articolo.

Commento di Luigi Borghi.

Insight: la talpa è finalmente sottoterra!

Le operazioni di ‘back-cap push’ hanno avuto successo e da una settimana la sonda termica, spinta dalla pala meccanica, è praticamente sotto il livello del terreno (aggiornamento del 8 giugno).
Dopo circa 14 mesi di peripezie, quella che sembrava una impresa quasi disperata si sta realizzando e la sonda termica dello strumento HP3 (“Heat Flow and Physical Properties Package”), destinata a misurare temperatura e flusso di calore nel suolo di Elysium planitia, è ora quasi interamente al di sotto del livello del terreno.


Sol 536, IDC (top) e ICC (bottom)
Credit: NASA/JPL-Caltech – Processing: Marco Di Lorenzo

Nell’immagine, l’accostamento mostra gli ultimi progressi registrati nel pomeriggio del Sol 536 (30 Maggio), su un arco temporale di mezz’ora: sia le riprese dalla fotocamera sul braccio robotico IDC (in alto), sia con la ICC grandangolare fissa sotto il deck del lander (in basso). Come si vede sulla destra, adesso la pala meccanica è “a filo” con il terreno circostante e la talpa, invisibile, è presumibilmente del tutto seppellita.

Come ha raccontato 4 giorni fa Tilman Spohn (Principal Investigator per HP3) nel suo blog, dopo la nuova “emersione” di Febbraio, in cui la talpa era risalita di ben 5 cm per effetto del riempimento di materiale della cavità in cui era precedentemente penetrata, si è abbandonata la tecnica del ‘pinning’ (pressione laterale) a favore di una strategia di ‘back-cap push’ ovvero di pressione sulla sommità della sonda.
Per prima cosa, la pala viene calata sulla talpa fino a toccarla e poi viene ulteriormente abbassata e messa in tensione, in modo da provocare una forza iniziale di 50 Newton (il peso di circa 5 kg sulla Terra) su di essa. Durante la fase successiva di martellamento, la talpa affonda di 15 mm mentre la forza esercitata dalla pala, che segue comunque l’abbassamento, si riduce progressivamente a zero per poi ricominciare dall’inizio.

Questa complessa strategia, ovviamente, non è improvvisata ma è il frutto di lunghe simulazioni svolte prima a Terra, con una copia dell’hardware interessato. A causa della portata limitata del braccio meccanico e dell’orientamento obliquo della talpa, il contatto tra i due si riduce ad un punto; sarebbe bastato un errore di posizionamento di pochissimi millimetri per causare lo scivolamento laterale della pala oppure, peggio ancora, il danneggiamento del cavo piatto che alimenta e trasporta informazioni dalla sonda; peraltro, il cavo è esso stesso uno strumento perché contiene svariati sensori di temperatura per tutta la sua lunghezza. Come se non bastasse, con l’abbassarsi della talpa, a causa dell’inclinazione di quest’ultima la pala tende ad avvicinarsi ulteriormente al cavo, per cui è necessario calcolare un margine di manovra.

Dati i margini così ristretti, il team ha prudentemente limitato le sessioni iniziali di martellamento a soli 25 colpi per volta; tale cifra è salita poi a 150 colpi nelle ultime sessioni, quando il team aveva ormai acquisito una certa confidenza sul processo e sulla capacità di riposizionare con precisione la pala sulla sonda. Quello che si può affermare fin da ora, è che la talpa non è stata ostacolata nel suo affondare da uno strato roccioso sepolto, come si era temuto inizialmente.

A detta di Sophn, la pala potrebbe ancora essere leggermente al di sopra del livello del terreno (anche se le immagini suggeriscono il contrario) e la sommità della talpa potrebbe sporgere ancora di 1 cm su lato più in alto; in effetti, nel Sol 543 (6 giugno) la pala è stata leggermente sollevata e poi riposizionata sulla talpa; in seguito, è stata effettuata una ultima sessione di “hammering” che ha portato il fondo della pala a diretto contatto con il terreno; adesso la talpa dovrebbe avere raggiunto lo strato più duro e profondo di regolite [in rosso la parte aggiornata la mattina del 8 giugno]
A quel punto, la pala verrà sollevata e verrà condotto un “free-Mole test” per studiarne il comportamento senza alcun aiuto. I calcoli fatti già nei mesi scorsi suggeriscono infatti che, una volta che la talpa è completamente sotto il livello del terreno, dovrebbe affondare spontaneamente senza aiuti ma per effetto della peso del terreno e della accresciuta pressione e frizione sulle sue pareti.

Se questo non dovesse verificarsi, ci sarebbero due possibili opzioni da seguire per le successive sessioni di martellamento:

  1. ricoprire con uno strato di terreno la sommità della talpa e pressare su di esso con la pala;
  2. continuare a fare pressione direttamente con la pala ma “di taglio”, usando il suo margine anteriore invece della parte piatta.

Nel primo caso, la pressione del braccio meccanico sarà necessaria solo nelle fasi iniziali poiché le simulazioni mostrano che, superati i 20 cm di profondità, il vantaggio che ne deriva diventerebbe trascurabile.

La seconda opzione appare ancora più azzardata di quanto fatto finora in termine di margini e rischi ma il team “Instrument Deployment Arm (IDA)” che gestisce il braccio meccanico si è dichiarato abbastanza confidente in questo senso.

Per concludere, una curiosità dalla stazione meteorologica di Insight: negli ultimi giorni si sono registrati nuovi record superiori di temperatura su Elysium Planitia, -50.4 °C come media giornaliera e +1,55 °C di temperatura massima, nei Sol 541 e 540 rispettivamente; si tratta sempre della conseguenza dell’approssimarsi del perielio marziano, nonostante la stagione autunnale inoltrata. Tuttavia, si sta avvicinando anche la stagione delle tempeste di sabbia e questo potrebbe diventare un serio problema per i prossimi tentativi con la talpa perché l’aumentata opacità atmosferica ridurrebbe la potenza generata dai pannelli solari, inibendo le operazioni con il braccio meccanico che richiedono parecchia energia.

Non ci resta che incrociare le dita e seguire con trepidazione le prossime manovre!

Di: Marco Di Lorenzo 08/06/2020

Link all’articolo

Space X sempre più vicina al test di volo della sua astronave Starship

Il prototipo Starship SN04 durante il test criogenico
Credit: NASASpaceflight/BocaChicagal

Il programma spaziale della SpaceX rischia di produrre mezzi di trasporto spaziale che supereranno, come prestazioni, quelli di qualsiasi agenzia spaziale governativa, NASA compresa.
Il veicolo completamente recuperabile e riutilizzabile sognato da Elon Musk, lo Starship, sarà la soluzione finale (almeno per un certo periodo) per il trasporto passeggeri nello spazio.
Lo “spazio” inteso da Musk non è solo la Stazione Spaziale, cioè l’orbita bassa terrestre. No! Starship è (sarà) un veicolo studiato per portare passeggeri, tanti, sulla Luna e su Marte e, perché no, anche da un continente all’altro in poco più di un’ora.
Lui usa un metodo collaudatissimo e vincente per portare avanti i suoi progetti innovativi: un passo alla volta, piano piano (ma poi neanche tanto). Fa errori, li capisce, rimedia modificando il progetto e poi avanti con il prossimo passo. È così via fino all’obiettivo. È stato cosi, se vi ricordate, con il recupero del primo stadio dei Falcon. All’inizio tanti fallimenti e poi… ora non fa più notizia, ma resta a tutti gli effetti, l’unico lanciatore orbitale al mondo in esercizio ad essere recuperabile.
Con lo Starship, sarà la stessa cosa. Lo abbiamo visto “scoppiare” sul sito di prova già diverse volte. Poi lo vedremo fare un balzetto per aria a 150 metri di quota. Dopodiché ce lo troveremo pieno di gente che va su Marte. Beh… forse è ancora presto, ma non mi stupirei se arrivasse ad essere pronto prima lui degli altri (per altri intendo il resto del mondo) per questa missione marziana.

Nell’immagine il prototipo ridotto di SN02 durante il test criogenico.
Credit: NASASpaceflight/BocaChicagal

Clicca qui per andare all’articolo di Alive Universe

Andiamo a vivere sulla Luna o su Marte?

Prima di tutto, Buona Pasqua!
La voglia di evadere è tanta, ma dobbiamo stare in casa. Spero di aiutarvi con queste considerazioni.
Il titolo di oggi è evidentemente una provocazione: meglio restare qui sulla Terra e mettersi in testa che è una sola e che la dobbiamo preservare.
Credo e spero che questa pandemia di positivo ci lasci una visione diversa del nostro futuro. Un futuro consapevole, equilibrato e sostenibile. Quello di prima non lo era. Non so come sarà, ma sara diverso!
Mi è venuta in mente questa provocazione perché, andando a fare la spesa in questi giorni di Covid-19, si vedono immagini surreali. Aria pulita, pochissima gente in giro e quei pochi che si vedono hanno tutti una mascherina sul viso. Certo che su Marte la “mascherina” sarebbe un tantino più pesante e sarebbe accompagnata da una robusta tuta termica. Però sulla Luna e su Marte i “coloni” dovrebbero restare il più possibile “in casa”, un po’ come facciamo noi adesso. Si esce solo per necessità, su un mezzo protetto (le nostre auto hanno aria condizionata e riscaldamento come i mezzi che scorrazzeranno su Marte) ed a trazione elettrica (io l’auto elettrica già ce l’ho anche qui sulla terra).
Un mondo ancora lontano ma che si sta avvicinando a grandi passi.
L’obiettivo dell’industria aerospaziale di oggi è quelle di studiare e sperimentare soluzioni tese realizzare colonie stabili, abitate ed operative al di fuori della Terra, portando da casa la minore quantità di merce possibile. Portare un KG di qualsiasi cosa nello spazio oggi costa parecchio: $20.000 in orbita bassa e $100.000 sulla Luna.
Quindi meno ne porti e meglio è. Bisogna tentare di sfruttare al massimo le risorse locali per produrre: materiale da costruzione; carburante per i razzi; energia e acqua. Sono queste le quattro voci che incidono parecchio sui costi di mantenimento di una colonia lunare. Componenti fondamentali che però oggi hanno già avuto risposte positive, almeno sulla Luna. L’acqua si trova in abbondanza, sotto forma di ghiaccio, all’interno dei crateri ai poli lunari.
Con l’acqua e l’energia dai pannelli solari si può ricavare idrogeno ed ossigeno, indispensabili per creare combustibili per razzi ed aria da respirare. L’ossigeno poi si può ricavare anche dalla stessa regolite di superficie senza dover “consumare” della preziosissima acqua.
L’articolo che vi propongo oggi riguarda la ricerca avanzata per usare la regolite come materiale da costruzione e l’urina umana come collante.
Si avete capito bene: urina! Non spaventatevi. Noi qui sulla Terra, senza dover andare nella stazione spaziale (ISS), già siamo sottoposti a questo processo: la pipi di oggi, di chiunque di noi, servirà a produrre la tazza di tè che berremo domani.
È un processo lungo ma inevitabile. Sulla Terra impiega decenni o secoli, mentre sulla ISS il ciclo si chiude in pochi giorni, ma alla fine l’urina diventa acqua potabile. Quindi se in futuro la useremo anche per tenere legati dei polimeri in una specie di “igloo” lunare, non sarà di certo un problema.

Rappresentazione artistica di un robot lunare mentre stampa in 3D la copertura di una cupola. Credit: ESA.

Clicca qui per andare all’articolo di astronautiNEWS