Dal transistor grosso come un grano di mais a quello grosso come pochi atomi..

Un ragazzo che oggi esce dalla università, da un istituto tecnico o da un liceo, non rimarrà stupito da una notizia del genere. Ma uno come me che i transistor li ha maneggiati uno ad uno, prima quelli al germanio (un po’ complicato da pilotare) e poi quelli al silicio, rimane a bocca aperta.

Come progettista hardware ho vissuto tutto il cambiamento: dalle valvole termoioniche degli anni 50, ai transistor degli anni 60, poi i circuiti integrati degli anni 70, i microprocessori degli anni 80 per terminare con i microcontrollori degli anni 90 del secolo scorso. Ho finito con un Arduino!

Da sempre, nella progettazione di automazione e computing, c’è stato il problema della memoria ritentiva.

La memoria ritentiva ideale deve essere: velocissima, ad accesso casuale (cioè una RAM), piccolissima, consumi prossimi allo zero e, naturalmente, ricordarsi di ciò che ha in testa anche dopo una perdita di alimentazione.

Questi erano i miei transistor negli anni Sessanta. (… ma non si ricordavano di nulla!)

(Prodotti dalla Texas Instruments, si vede il profilo dello stato USA sul contenitore)

Di memorie ne sono state inventate tantissime, basate su diverse tecnologie, ma tutte quante dovevano sacrificare una o più di queste caratteristiche. Ai tempi del progetto Apollo (metà anni Sessanta), la soluzione fu la memoria a nuclei in ferrite (core) che era veloce (per gli standard di allora) era ad accesso casuale, ma non era di certo piccola. I singoli bit (gli anellini di ferrite che stazionavano all’incrocio dei cavi di indirizzo e di “sense”) si potevano vedere ad occhio nudo. Si è passato poi alle RAM CMOS che avevano tutte queste caratteristiche (anche se molto più voluminose delle DRAM) ma mantenevano i dati solo perché avevano una batteria che gli garantiva l’alimentazione.

Finita la batteria, addio memoria.

Oggi invece la più soddisfacente soluzione è la combinazione Flash memory (che hanno sostituito gli Hard Disk) con le DRAM. Le prime ritengono i dati anche in mancanza di tensione (onestamente non si sa ancora bene per quanto tempo, ma probabilmente più di un decennio), ma li restituiscono non in modo random ma seriale. Insomma, ci vuole qualche decina di secondi di pazienza. Poi questi dati vengono memorizzati nella DRAM e a questo punto si va a scheggia! C’è da aggiungere che le Flash memory non “godono” quando le scrivi e con l’andar del tempo ti piantano in asso. (mediamente su un PC, meno di dieci anni)

L’articolo che vi propongo oggi invece vi parla dei risultati di una ricerca su un principio che già si conosceva da tempo e cioè la Commutazione resistiva non volatile (NVRS).

Queta tecnologia, nota anche come memristor, consiste sostanzialmente in un componente elettronico passivo a due terminali (come una resistenza, un condensatore o una induttanza), ma che può cambiare la sua resistenza interna e ricordarsi di averlo fatto!

Sebbene il memristore fosse stato teorizzato e descritto sin dal 1971 da parte di Leon Chua dell’Università di Berkeley, in un articolo pubblicato su IEEE Transactions on Circuit Theory, è rimasto un dispositivo teorico fino a pochi anni fa.

Si tratta di un bipolo in cui una variazione di carica elettrica, dà luogo ad una variazione di flusso magnetico e quindi ad una tensione, che dovrebbe localizzarsi ai capi del componente. (Fonte Wikipedia).

Quando la tensione viene fornita attraverso gli elettrodi di platino, gli atomi di Tio2 si diffonderanno a destra o a sinistra nel materiale in base alla polarità della tensione che rende più sottile o più spesso, quindi dà una trasformazione in resistenza.

Il memristore ha la proprietà di “ricordare” lo stato elettronico e di rappresentarlo mediante segnali analogici. Un circuito di questo tipo consentirebbe di realizzare calcolatori con accensione istantanea, senza la necessità di ricaricare il sistema operativo a ogni avvio.

Il circuito, infatti, conserva l’informazione anche in assenza di corrente elettrica, quando il calcolatore è spento.

La capacità di memorizzare segnali analogici anche nelle memorie allo stato solido non volatili consentirebbe di memorizzare ed elaborare una mole di dati molto maggiore di quella trattata con i circuiti digitali, in grado di rappresentare solo due stati (0 ed 1).

Il memristore apre a una nuova generazione di memorie e di potenze di calcolo.

Promette una capacità di circa 25 terabit per centimetro quadrato. Questa è una densità di memoria 100 volte superiore per strato rispetto ai dispositivi di memoria flash disponibili in commercio.

La fine delle flash memory e dei dischi rigidi.

Nell’ultimo decennio si sono avute notevoli progressi nei materiali di commutazione resistiva non volatili come gli ossidi metallici e gli elettroliti solidi. Si è creduto a lungo che le correnti di perdita avrebbero impedito l’osservazione di questo fenomeno per strati isolanti nanometrici-sottili. Tuttavia, la recente scoperta della commutazione resistiva non volatile in monostrati bidimensionali di dicalcogenide metallica di transizione e nitruro di boro esagonale le strutture sandwich (note anche come atomristors) hanno confutato questa convinzione e aggiunto una nuova dimensione dei materiali grazie ai vantaggi del ridimensionamento delle dimensioni.

L’imaging atomistico e la spettroscopia rivelano che la sostituzione del metallo in un posto vacante di zolfo si traduce in un cambiamento non volatile nella resistenza, che è confermato da studi computazionali su strutture di difetti e stati elettronici.

Questi risultati forniscono una comprensione atomistica della commutazione non volatile e aprono una nuova direzione nell’ingegneria dei difetti di precisione, fino a un singolo difetto, verso il raggiungimento del più piccolo memristor per applicazioni in memoria ultra-densa, calcolo neuromorfico e sistemi di comunicazione a radiofrequenza.

Commentato da Luigi Borghi

Eccovi l’articolo tradotto.

https://www.sciencedaily.com/releases/2020/11/201123161014.htm https://qnewshub.com/technology/worlds-smallest-atom-memory-unit-created/

È stata creata la più piccola unità di memoria retentiva atomica al mondo.

Da Staff Writers Austin TX. (SPX) 27 novembre 2020.

Chip più veloci, più piccoli, più intelligenti e più efficienti dal punto di vista energetico per tutto, dall’elettronica di consumo ai big data, all’informatica ispirata al cervello potrebbero presto essere in arrivo dopo che gli ingegneri dell’Università del Texas ad Austin hanno creato il dispositivo di memoria più piccolo di sempre.

E nel processo, hanno capito la dinamica fisica che sblocca dense capacità di archiviazione della memoria per questi piccoli dispositivi.

La ricerca pubblicata di recente su Nature Nanotechnology si basa su una scoperta di due anni fa, quando i ricercatori hanno creato quello che allora era il dispositivo di archiviazione della memoria più sottile. In questo nuovo lavoro, i ricercatori hanno ridotto ulteriormente le dimensioni, riducendo l’area della sezione trasversale a un solo nanometro quadrato.

Ottenere un controllo sulla fisica che impacchetta la capacità di archiviazione della memoria densa in questi dispositivi ha permesso di renderli molto più piccoli. Difetti o buchi nel materiale forniscono la chiave per sbloccare la capacità di archiviazione della memoria ad alta densità.

“Quando un singolo atomo metallico aggiuntivo entra in quel buco su scala nanometrica e lo riempie, conferisce parte della sua conduttività nel materiale, e questo porta a un cambiamento o a un effetto memoria”, ha detto Deji Akinwande, professore presso il Department of Electrical and Computer Engineering.

Sebbene abbiano usato il disolfuro di molibdeno – noto anche come MoS2 – come nanomateriale primario nel loro studio, i ricercatori pensano che la scoperta potrebbe applicarsi a centinaia di materiali atomicamente sottili correlati.

La corsa per realizzare chip e componenti più piccoli è tutta legata alla potenza ed alla convenienza. Con processori più piccoli, è possibile creare computer e telefoni più compatti. Ma ridurre i chip riduce anche il loro fabbisogno energetico e aumenta la capacità, il che significa dispositivi più veloci e intelligenti che richiedono meno energia per funzionare.

“I risultati ottenuti in questo lavoro aprono la strada allo sviluppo di applicazioni di generazione futura che interessano il Dipartimento della Difesa, come lo storage ultra-denso, i sistemi di calcolo neuromorfico, i sistemi di comunicazione a radiofrequenza e altro ancora”, ha dichiarato Pani Varanasi, program manager del U.S. Army Research Office, che ha finanziato la ricerca.

Il dispositivo originale – soprannominato dal team di ricerca “atomristor” – era all’epoca il dispositivo di memorizzazione più sottile mai registrato, con un singolo strato atomico di spessore. Ma ridurre un dispositivo di memoria non significa solo renderlo più sottile, ma anche costruirlo con un’area di sezione trasversale più piccola.

“Il Santo Graal scientifico per il ridimensionamento sta scendendo a un livello in cui un singolo atomo controlla la funzione di memoria, e questo è ciò che abbiamo realizzato nel nuovo studio”, ha detto Akinwande.

Il dispositivo di Akinwande rientra nella categoria dei memristors, una popolare area di ricerca sulla memoria, incentrata sui componenti elettrici con la capacità di modificare la resistenza tra i suoi due terminali senza la necessità di un terzo terminale nel mezzo noto come gate. Ciò significa che possono essere più piccoli dei dispositivi di memoria di oggi e vantare una maggiore capacità di archiviazione. Questa versione del memristor – sviluppata utilizzando le strutture avanzate dell’Oak Ridge National Laboratory – promette una capacità di circa 25 terabit per centimetro quadrato. Questa è una densità di memoria 100 volte superiore per strato rispetto ai dispositivi di memoria flash disponibili in commercio.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato.

CAPTCHA